Distinctive Tropical Forest Variants Have Unique Soil Microbial Communities, But Not Always Low Microbial Diversity

نویسندگان

  • Binu M. Tripathi
  • Woojin Song
  • J. W. F. Slik
  • Rahayu S. Sukri
  • Salwana Jaafar
  • Ke Dong
  • Jonathan M. Adams
چکیده

There has been little study of whether different variants of tropical rainforest have distinct soil microbial communities and levels of diversity. We compared bacterial and fungal community composition and diversity between primary mixed dipterocarp, secondary mixed dipterocarp, white sand heath, inland heath, and peat swamp forests in Brunei Darussalam, Northwest Borneo by analyzing Illumina Miseq sequence data of 16S rRNA gene and ITS1 region. We hypothesized that white sand heath, inland heath and peat swamp forests would show lower microbial diversity and relatively distinct microbial communities (compared to MDF primary and secondary forests) due to their distinctive environments. We found that soil properties together with bacterial and fungal communities varied significantly between forest types. Alpha and beta-diversity of bacteria was highest in secondary dipterocarp and white sand heath forests. Also, bacterial alpha diversity was strongly structured by pH, adding another instance of this widespread pattern in nature. The alpha diversity of fungi was equally high in all forest types except peat swamp forest, although fungal beta-diversity was highest in primary and secondary mixed dipterocarp forests. The relative abundance of ectomycorrhizal (EcM) fungi varied significantly between forest types, with highest relative abundance observed in MDF primary forest. Overall, our results suggest that the soil bacterial and fungal communities in these forest types are to a certain extent predictable and structured by soil properties, but that diversity is not determined by how distinctive the conditions are. This contrasts with the diversity patterns seen in rainforest trees, where distinctive soil conditions have consistently lower tree diversity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The microbiomes and metagenomes of forest biochars

Biochar particles have been hypothesized to provide unique microhabitats for a portion of the soil microbial community, but few studies have systematically compared biochar communities to bulk soil communities. Here, we used a combination of sequencing techniques to assess the taxonomic and functional characteristics of microbial communities in four-year-old biochar particles and in adjacent so...

متن کامل

Introduced Canopy Tree Species Effect on the Soil Microbial Community in a Montane Tropical Forest

Within a single site in the Kohala Forest Reserve, Hawai‘i, we examined composition and diversity of soil microbial communities under four introduced (Cryptomeria japonica, Casuarina equisetifolia, Araucaria columnaris, and Eucalyptus sp.) and one native (Metrosideros polymorpha) canopy tree species, as well as pasture. Terminal restriction fragment length polymorphism (T-RFLP) analysis of soil...

متن کامل

The effect of introduced canopy tree species on the soil microbial community in a montane tropical forest

Within a single site in the Kohala Forest Reserve, Hawai`i, we examined the composition and diversity of soil microbial communities under four introduced (Cryptomeria japonica, Casuarina equisetifolia, Araucaria columnaris, and Eucalyptus sp.) and one native (Metrosideros polymorpha) canopy tree species, as well as pasture. Terminal restriction fragment length polymorphism (T-RFLP) analysis of ...

متن کامل

Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests.

Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between mic...

متن کامل

Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession

The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth's biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in microbiology

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016